MathDB
Tangent Circles

Source: AMC 12 2006B, Problem 15

February 17, 2006
geometryrectangleAMC

Problem Statement

Circles with centers O O and P P have radii 2 and 4, respectively, and are externally tangent. Points A A and B B are on the circle centered at O O, and points C C and D D are on the circle centered at P P, such that AD \overline{AD} and BC \overline{BC} are common external tangents to the circles. What is the area of hexagon AOBCPD AOBCPD?
[asy] unitsize(0.4 cm); defaultpen(linewidth(0.7) + fontsize(11)); pair A, B, C, D; pair[] O; O[1] = (6,0); O[2] = (12,0); A = (32/6,8*sqrt(2)/6); B = (32/6,-8*sqrt(2)/6); C = 2*B; D = 2*A; draw(Circle(O[1],2)); draw(Circle(O[2],4)); draw((0.7*A)--(1.2*D)); draw((0.7*B)--(1.2*C)); draw(O[1]--O[2]); draw(A--O[1]); draw(B--O[1]); draw(C--O[2]); draw(D--O[2]); label("AA", A, NW); label("BB", B, SW); label("CC", C, SW); label("DD", D, NW); dot("OO", O[1], SE); dot("PP", O[2], SE); label("22", (A + O[1])/2, E); label("44", (D + O[2])/2, E);[/asy]
<spanclass=latexbold>(A)</span>183<spanclass=latexbold>(B)</span>242<spanclass=latexbold>(C)</span>36<spanclass=latexbold>(D)</span>243<spanclass=latexbold>(E)</span>322 <span class='latex-bold'>(A) </span> 18\sqrt {3} \qquad <span class='latex-bold'>(B) </span> 24\sqrt {2} \qquad <span class='latex-bold'>(C) </span> 36 \qquad <span class='latex-bold'>(D) </span> 24\sqrt {3} \qquad <span class='latex-bold'>(E) </span> 32\sqrt {2}