MathDB
Romanian National Olympiad 2018 - Grade 11 - problem 4

Source: Romania NMO - 2018

April 7, 2018
linear algebraMatricesrankmatrix

Problem Statement

Let nn be an integer with n2n \geq 2 and let AMn(C)A \in \mathcal{M}_n(\mathbb{C}) such that rankArankA2.\operatorname{rank} A \neq \operatorname{rank} A^2. Prove that there exists a nonzero matrix BMn(C)B \in \mathcal{M}_n(\mathbb{C}) such that AB=BA=B2=0AB=BA=B^2=0
Cornel Delasava