MathDB
sum \sqrt{1+k^2} sin(a_k-a_{1000}) (VI Soros Olympiad 1990-00 R1 9.8)

Source:

May 27, 2024
algebratrigonometrySum

Problem Statement

Let ana_n denote an angle from the interval for each (0,π2)\left( 0, \frac{\pi}{2}\right) , the tangent of which is equal to nn . Prove that 1+12sin(a1a1000)+1+22sin(a2a1000)+...+1+20002sin(a2000a1000)=sina1000\sqrt{1+1^2} \sin(a_1-a_{1000}) + \sqrt{1+2^2} \sin(a_2-a_{1000})+...+\sqrt{1+2000^2} \sin(a_{2000}-a_{1000}) = \sin a_{1000}