MathDB
Today's Calculation of Integral 47

Source: 2001 Tokyo University

June 17, 2005
calculusintegrationfunctiontrigonometrycalculus computations

Problem Statement

Find the condition of a,ba,b for which the function f(x) (0x2π)f(x)\ (0\leq x\leq 2\pi) satisfying the following equality can be determined uniquely,then determine f(x)f(x), assuming that f(x)f(x) is a continuous function at 0x2π0\leq x\leq 2\pi. f(x)=a2π02πsin(x+y)f(y)dy+b2π02πcos(xy)f(y)dy+sinx+cosxf(x)=\frac{a}{2\pi}\int_0^{2\pi} \sin (x+y)f(y)dy+\frac{b}{2\pi}\int_0^{2\pi} \cos (x-y)f(y)dy+\sin x+\cos x