MathDB
Problems
Contests
National and Regional Contests
Netherlands Contests
Dutch Mathematical Olympiad
2005 Dutch Mathematical Olympiad
2
Regular dodecagon
Regular dodecagon
Source: Dutch Mathematical Olympiad 2005
September 19, 2005
complex numbers
Problem Statement
Let
P
1
P
2
P
3
…
P
12
P_1P_2P_3\dots P_{12}
P
1
P
2
P
3
…
P
12
be a regular dodecagon. Show that
∣
P
1
P
2
∣
2
+
∣
P
1
P
4
∣
2
+
∣
P
1
P
6
∣
2
+
∣
P
1
P
8
∣
2
+
∣
P
1
P
10
∣
2
+
∣
P
1
P
12
∣
2
\left|P_1P_2\right|^2 + \left|P_1P_4\right|^2 + \left|P_1P_6\right|^2 + \left|P_1P_8\right|^2 + \left|P_1P_{10}\right|^2 + \left|P_1P_{12}\right|^2
∣
P
1
P
2
∣
2
+
∣
P
1
P
4
∣
2
+
∣
P
1
P
6
∣
2
+
∣
P
1
P
8
∣
2
+
∣
P
1
P
10
∣
2
+
∣
P
1
P
12
∣
2
is equal to
∣
P
1
P
3
∣
2
+
∣
P
1
P
5
∣
2
+
∣
P
1
P
7
∣
2
+
∣
P
1
P
9
∣
2
+
∣
P
1
P
11
∣
2
.
\left|P_1P_3\right|^2 + \left|P_1P_5\right|^2 + \left|P_1P_7\right|^2 + \left|P_1P_9\right|^2 + \left|P_1P_{11}\right|^2.
∣
P
1
P
3
∣
2
+
∣
P
1
P
5
∣
2
+
∣
P
1
P
7
∣
2
+
∣
P
1
P
9
∣
2
+
∣
P
1
P
11
∣
2
.
Back to Problems
View on AoPS