MathDB
Regular dodecagon

Source: Dutch Mathematical Olympiad 2005

September 19, 2005
complex numbers

Problem Statement

Let P1P2P3P12P_1P_2P_3\dots P_{12} be a regular dodecagon. Show that P1P22+P1P42+P1P62+P1P82+P1P102+P1P122\left|P_1P_2\right|^2 + \left|P_1P_4\right|^2 + \left|P_1P_6\right|^2 + \left|P_1P_8\right|^2 + \left|P_1P_{10}\right|^2 + \left|P_1P_{12}\right|^2 is equal to P1P32+P1P52+P1P72+P1P92+P1P112.\left|P_1P_3\right|^2 + \left|P_1P_5\right|^2 + \left|P_1P_7\right|^2 + \left|P_1P_9\right|^2 + \left|P_1P_{11}\right|^2.