Putnam 1995 A5
Source:
July 1, 2014
Putnamfunctionlimitvectorlinear algebramatrixcollege contests
Problem Statement
Let be real valued differentiable functions of a variable which satisfy
\begin{align*}
& \frac{\mathrm{d}x_1}{\mathrm{d}t}=a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n\\
& \frac{\mathrm{d}x_2}{\mathrm{d}t}=a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n\\
& \;\qquad \vdots \\
& \frac{\mathrm{d}x_n}{\mathrm{d}t}=a_{n1}x_1+a_{n2}x_2+\cdots+a_{nn}x_n\\
\end{align*}
For some constants . Suppose that for all . Are the functions necessarily linearly dependent?