MathDB
Rent a g(n)f(n)

Source: 2021 AIME II #15

March 19, 2021

Problem Statement

Let f(n)f(n) and g(n)g(n) be functions satisfying f(n)={n if n is an integer1+f(n+1) otherwisef(n) = \begin{cases}\sqrt{n} & \text{ if } \sqrt{n} \text{ is an integer}\\ 1 + f(n+1) & \text{ otherwise} \end{cases}and g(n)={n if n is an integer2+g(n+2) otherwiseg(n) = \begin{cases}\sqrt{n} & \text{ if } \sqrt{n} \text{ is an integer}\\ 2 + g(n+2) & \text{ otherwise} \end{cases}for positive integers nn. Find the least positive integer nn such that f(n)g(n)=47\tfrac{f(n)}{g(n)} = \tfrac{4}{7}.