MathDB
Maximization of the Area of a Quadrilateral

Source:

March 3, 2010
geometry

Problem Statement

ABCD ABCD is a square with side of unit length. Points E E and F F are taken respectively on sides AB AB and AD AD so that AE \equal{} AF and the quadrilateral CDFE CDFE has maximum area. In square units this maximum area is: <spanclass=latexbold>(A)</span> 12<spanclass=latexbold>(B)</span> 916<spanclass=latexbold>(C)</span> 1932<spanclass=latexbold>(D)</span> 58<spanclass=latexbold>(E)</span> 23 <span class='latex-bold'>(A)</span>\ \frac12 \qquad <span class='latex-bold'>(B)</span>\ \frac {9}{16} \qquad <span class='latex-bold'>(C)</span>\ \frac{19}{32} \qquad <span class='latex-bold'>(D)</span>\ \frac {5}{8} \qquad <span class='latex-bold'>(E)</span>\ \frac23