MathDB
Inequality with a^2+b^2+c^2+abc=4

Source: USAMO 2001 #3

June 27, 2004
inequalitiessymmetrytrigonometryAMCUSA(J)MOUSAMOquadratics

Problem Statement

Let a,b,c0a, b, c \geq 0 and satisfy a2+b2+c2+abc=4. a^2+b^2+c^2 +abc = 4 . Show that 0ab+bc+caabc2. 0 \le ab + bc + ca - abc \leq 2.