MathDB
IMC 2016, Problem 3

Source: IMC 2016

July 27, 2016
IMCIMC 2016Summationcollege contests

Problem Statement

Let nn be a positive integer. Also let a1,a2,,ana_1, a_2, \dots, a_n and b1,b2,,bnb_1,b_2,\dots, b_n be real numbers such that ai+bi>0a_i+b_i>0 for i=1,2,,ni=1,2,\dots, n. Prove that i=1naibibi2ai+bii=1naii=1nbi(i=1nbi)2i=1n(ai+bi)\sum_{i=1}^n \frac{a_ib_i-b_i^2}{a_i+b_i}\le\frac{\displaystyle \sum_{i=1}^n a_i\cdot \sum_{i=1}^n b_i - \left( \sum_{i=1}^n b_i\right) ^2}{\displaystyle\sum_{i=1}^n (a_i+b_i)}.
(Proposed by Daniel Strzelecki, Nicolaus Copernicus University in Toruń, Poland)