Let n be a positive integer. Also let a1,a2,…,an and b1,b2,…,bn be real numbers such that ai+bi>0 for i=1,2,…,n. Prove that
i=1∑nai+biaibi−bi2≤i=1∑n(ai+bi)i=1∑nai⋅i=1∑nbi−(i=1∑nbi)2.(Proposed by Daniel Strzelecki, Nicolaus Copernicus University in Toruń, Poland)