MathDB
Geometry with complex numbers

Source: Greek national M.O. 2009, Final Round,problem 4

November 15, 2011
geometrytrigonometrycomplex numbersgeometry unsolved

Problem Statement

Consider pairwise distinct complex numbers z1,z2,z3,z4,z5,z6z_1,z_2,z_3,z_4,z_5,z_6 whose images A1,A2,A3,A4,A5,A6A_1,A_2,A_3,A_4,A_5,A_6 respectively are succesive points on the circle centered at O(0,0)O(0,0) and having radius r>0.r>0. If ww is a root of the equation z2+z+1=0z^2+z+1=0 and the next equalities hold z1w2+z3w+z5=0z2w2+z4w+z6=0z_1w^2+z_3w+z_5=0 \\ z_2w^2+z_4w+z_6=0 prove that
a) Triangle A1A3A5A_1A_3A_5 is equilateral b) z1z2+z2z3+z3z4+z4z5+z5z6+z6z1=3z1z4=3z2z5=3z3z6.|z_1-z_2|+|z_2-z_3|+|z_3-z_4|+|z_4-z_5|+z_5-z_6|+|z_6-z_1|=3|z_1-z_4|=3|z_2-z_5|=3|z_3-z_6|.