MathDB
Rioplatense Olympiad 2001 P3

Source: Rioplatense Olympiad 2001 P3

October 2, 2017
combinatoricsalgebra

Problem Statement

Let n>1n>1 be an integer. For each numbers (x1,x2,,xn)(x_1, x_2,\dots, x_n) with x12+x22+x32++xn2=1x_1^2+x_2^2+x_3^2+\dots +x_n^2=1, denote m=min{xixj,0<i<j<n+1}m=\min\{|x_i-x_j|, 0<i<j<n+1\} Find the maximum value of mm.