MathDB
Miklos Schweitzer 1972_1

Source:

November 5, 2008
combinatorics proposedcombinatoricsSet systems

Problem Statement

Let F \mathcal{F} be a nonempty family of sets with the following properties: (a) If XF X \in \mathcal{F}, then there are some YF Y \in \mathcal{F} and ZF Z \in \mathcal{F} such that YZ= Y \cap Z =\emptyset and YZ=X Y \cup Z=X. (b) If XF X \in \mathcal{F}, and YZ=X,YZ= Y \cup Z =X , Y \cap Z=\emptyset, then either YF Y \in \mathcal{F} or ZF Z \in \mathcal{F}. Show that there is a decreasing sequence X0X1X2... X_0 \supseteq X_1 \supseteq X_2 \supseteq ... of sets XnF X_n \in \mathcal{F} such that n=0Xn=. \bigcap_{n=0}^{\infty} X_n= \emptyset. F. Galvin