Source: Romania National Olympiad 2014, Grade XII, Problem 3
March 3, 2019
functionreal analysis
Problem Statement
Let f:[1,∞)⟶(0,∞) be a continuous function satisfying the following properties:(i)∃limx→∞xf(x)∈R(ii)∃limx→∞x1∫1xf(t)dt∈R.a) Show that limx→∞xf(x)=0.
b) Prove that limx→∞x21∫1xf2(t)dt=0.