MathDB
There exists x_1,x_2 for an integrable function f

Source:

December 8, 2010
functionintegrationcalculusinequalitiesreal analysisreal analysis unsolved

Problem Statement

Let f:[0,1]Rf:[0,1]\rightarrow\mathbb{R} be an integrable function such that: 0<01f(x)dx1.0<\left\vert \int_{0}^{1}f(x)\, \text{d}x\right\vert\le 1. Show that there exists x1x2,x1,x2[0,1]x_1\not= x_2, x_1,x_2\in [0,1], such that: x1x2f(x)dx=(x1x2)2002\int_{x_1}^{x_2}f(x)\, \text{d}x=(x_1-x_2)^{2002}