MathDB
Proving a Locus

Source:

February 1, 2009

Problem Statement

Which of the following methods of proving a geometric figure a locus is not correct? <spanclass=latexbold>(A)</span> Every point of the locus satisfies the conditions and every point not on the locus does not satisfy the conditions. <span class='latex-bold'>(A)</span>\ \text{Every point of the locus satisfies the conditions and every point not on the locus does not satisfy the conditions.} <spanclass=latexbold>(B)</span> Every point not satisfying the conditions is not on the locus and every point on the locus does satisfy the conditions. <span class='latex-bold'>(B)</span>\ \text{Every point not satisfying the conditions is not on the locus and every point on the locus does satisfy the conditions.} <spanclass=latexbold>(C)</span> Every point satisfying the conditions is on the locus and every point on the locus satisfies the conditions. <span class='latex-bold'>(C)</span>\ \text{Every point satisfying the conditions is on the locus and every point on the locus satisfies the conditions.} <spanclass=latexbold>(D)</span> Every point not on the locus does not satisfy the conditions and every point not satisfyingthe conditions is not on the locus. <span class='latex-bold'>(D)</span>\ \text{Every point not on the locus does not satisfy the conditions and every point not satisfying} \\ \text{the conditions is not on the locus.} <spanclass=latexbold>(E)</span> Every point satisfying the conditions is on the locus and every point not satisfying the conditions is not on the locus. <span class='latex-bold'>(E)</span>\ \text{Every point satisfying the conditions is on the locus and every point not satisfying the conditions is not on the locus.}