MathDB
Problems
Contests
National and Regional Contests
Japan Contests
Today's Calculation Of Integral
2011 Today's Calculation Of Integral
751
Today's calculation of Integral 751
Today's calculation of Integral 751
Source:
September 7, 2011
calculus
integration
limit
trigonometry
logarithms
calculus computations
Problem Statement
Find
lim
n
→
∞
(
1
n
∫
0
n
(
sin
2
π
x
)
ln
(
x
+
n
)
d
x
−
1
2
ln
n
)
.
\lim_{n\to\infty}\left(\frac{1}{n}\int_0^n (\sin ^ 2 \pi x)\ln (x+n)dx-\frac 12\ln n\right).
lim
n
→
∞
(
n
1
∫
0
n
(
sin
2
π
x
)
ln
(
x
+
n
)
d
x
−
2
1
ln
n
)
.
Back to Problems
View on AoPS