MathDB
Polynomial inequality - IMO Long List 1986

Source:

August 29, 2010
polynomialbinomial coefficientscombinatorial inequalitypascal s trianglecombinatoricsIMO ShortlistIMO 1985

Problem Statement

For any polynomial P(x)=a0+a1x++akxkP(x)=a_0+a_1x+\ldots+a_kx^k with integer coefficients, the number of odd coefficients is denoted by o(P)o(P). For i0,1,2,i-0,1,2,\ldots let Qi(x)=(1+x)iQ_i(x)=(1+x)^i. Prove that if i1,i2,,ini_1,i_2,\ldots,i_n are integers satisfying 0i1<i2<<in0\le i_1<i_2<\ldots<i_n, then: o(Qi1+Qi2++Qin)o(Qi1). o(Q_{i_{1}}+Q_{i_{2}}+\ldots+Q_{i_{n}})\ge o(Q_{i_{1}}).