MathDB
IOQM 2022-23 P-14

Source:

October 30, 2022
algebracomplex numbers

Problem Statement

Let x,y,zx,y,z be complex numbers such that\\ xy+z+yz+x+zx+y=9\hspace{ 2cm} \frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=9\\ x2y+z+y2z+x+z2x+y=64\hspace{ 2cm} \frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}=64\\ x3y+z+y3z+x+z3x+y=488\hspace{ 2cm} \frac{x^3}{y+z}+\frac{y^3}{z+x}+\frac{z^3}{x+y}=488\\ \\ If xyz+yzx+zxy=mn\frac{x}{yz}+\frac{y}{zx}+\frac{z}{xy}=\frac{m}{n} where m,nm,n are positive integers with GCD(m,n)=1GCD(m,n)=1, find m+nm+n.