MathDB
Functional xf(x+f(y))=(y-x)f(f(x)) for all reals x,y

Source: BMO 2023 Problem 1

May 10, 2023
algebrafunctional equationBMO Shortlist

Problem Statement

Find all functions f ⁣:RRf\colon \mathbb{R} \rightarrow \mathbb{R} such that for all x,yRx,y \in \mathbb{R}, xf(x+f(y))=(yx)f(f(x)).xf(x+f(y))=(y-x)f(f(x)).
Proposed by Nikola Velov, Macedonia