MathDB
Conditional squares imply injectivity

Source: EMC 2023 Seniors P4

December 18, 2023
EMC 20232023functional equationfunctionIvan Novak orzevan orz

Problem Statement

Let f ⁣:NNf\colon\mathbb{N}\rightarrow\mathbb{N} be a function such that for all positive integers xx and yy, the number f(x)+yf(x)+y is a perfect square if and only if x+f(y)x+f(y) is a perfect square. Prove that ff is injective.
Remark. A function f ⁣:NNf\colon\mathbb{N}\rightarrow\mathbb{N} is injective if for all pairs (x,y)(x,y) of distinct positive integers, f(x)f(y)f(x)\neq f(y) holds.
Ivan Novak