MathDB
Problems
Contests
National and Regional Contests
USA Contests
USA - College-Hosted Events
CMIMC Problems
2021 CMIMC
1.8
2021 Alg/NT Div 1 P8
2021 Alg/NT Div 1 P8
Source:
March 2, 2021
algebra
number theory
Problem Statement
There are integers
v
,
w
,
x
,
y
,
z
v,w,x,y,z
v
,
w
,
x
,
y
,
z
and real numbers
0
≤
θ
<
θ
′
≤
π
0\le \theta < \theta' \le \pi
0
≤
θ
<
θ
′
≤
π
such that
cos
3
θ
=
cos
3
θ
′
=
v
−
1
,
w
+
x
cos
θ
+
y
cos
2
θ
=
z
cos
θ
′
.
\cos 3\theta = \cos 3\theta' = v^{-1}, \qquad w+x\cos \theta + y\cos 2\theta = z\cos \theta'.
cos
3
θ
=
cos
3
θ
′
=
v
−
1
,
w
+
x
cos
θ
+
y
cos
2
θ
=
z
cos
θ
′
.
Given that
z
≠
0
z\ne 0
z
=
0
and
v
v
v
is positive, find the sum of the
4
4
4
smallest possible values of
v
v
v
.Proposed by Vijay Srinivasan
Back to Problems
View on AoPS