MathDB
2021 Alg/NT Div 1 P8

Source:

March 2, 2021
algebranumber theory

Problem Statement

There are integers v,w,x,y,zv,w,x,y,z and real numbers 0θ<θπ0\le \theta < \theta' \le \pi such that cos3θ=cos3θ=v1,w+xcosθ+ycos2θ=zcosθ.\cos 3\theta = \cos 3\theta' = v^{-1}, \qquad w+x\cos \theta + y\cos 2\theta = z\cos \theta'. Given that z0z\ne 0 and vv is positive, find the sum of the 44 smallest possible values of vv.
Proposed by Vijay Srinivasan