MathDB
Problems
Contests
Undergraduate contests
Putnam
1980 Putnam
B4
Putnam 1980 B4
Putnam 1980 B4
Source: Putnam 1980
April 1, 2022
Putnam
set theory
Problem Statement
Let
A
1
,
A
2
,
…
,
A
1066
A_1 , A_2 ,\ldots, A_{1066}
A
1
,
A
2
,
…
,
A
1066
be subsets of a finite set
X
X
X
such that
∣
A
i
∣
>
1
2
∣
X
∣
|A_i | > \frac{1}{2} |X|
∣
A
i
∣
>
2
1
∣
X
∣
for
1
≤
i
≤
1066.
1\leq i \leq 1066.
1
≤
i
≤
1066.
Prove that there exist ten elements
x
1
,
x
2
,
…
,
x
10
x_1 ,x_2 ,\ldots , x_{10}
x
1
,
x
2
,
…
,
x
10
of
X
X
X
such that every
A
i
A_i
A
i
contains at least one of
x
1
,
x
2
,
…
,
x
10
.
x_1 , x_2 ,\ldots, x_{10}.
x
1
,
x
2
,
…
,
x
10
.
Back to Problems
View on AoPS