MathDB
Geometric inequality with angles

Source:

September 1, 2010
trigonometrygeometryarea of a trianglegeometric inequalityIMO ShortlistIMO Longlist

Problem Statement

Let p,qp, q, and rr be the angles of a triangle, and let a=sin2p,b=sin2qa = \sin2p, b = \sin2q, and c=sin2rc = \sin2r. If s=(a+b+c)2s = \frac{(a + b + c)}2, show that s(sa)(sb)(sc)0.s(s - a)(s - b)(s -c) \geq 0. When does equality hold?