MathDB
Problems
Contests
International Contests
IMO Longlists
1987 IMO Longlists
44
Inequality with sin θ
Inequality with sin θ
Source:
September 6, 2010
inequalities
trigonometry
modular arithmetic
inequalities unsolved
Problem Statement
Let
θ
1
,
θ
2
,
⋯
,
θ
n
\theta_1,\theta_2,\cdots,\theta_n
θ
1
,
θ
2
,
⋯
,
θ
n
be
n
n
n
real numbers such that
sin
θ
1
+
sin
θ
2
+
⋯
+
sin
θ
n
=
0
\sin \theta_1+\sin \theta_2+\cdots+\sin \theta_n=0
sin
θ
1
+
sin
θ
2
+
⋯
+
sin
θ
n
=
0
. Prove that
∣
sin
θ
1
+
2
sin
θ
2
+
⋯
+
n
sin
θ
n
∣
≤
[
n
2
4
]
|\sin \theta_1+2 \sin \theta_2+\cdots +n \sin \theta_n| \leq \left[ \frac{n^2}{4} \right]
∣
sin
θ
1
+
2
sin
θ
2
+
⋯
+
n
sin
θ
n
∣
≤
[
4
n
2
]
Back to Problems
View on AoPS