MathDB
P_n(n,x): given a product, prove a sum

Source: Putnam 1990 B2

July 12, 2013
inductionPutnamcollege contests

Problem Statement

Prove that for x<1 |x| < 1 , z>1 |z| > 1 , 1+j=1(1+xj)Pj=0, 1 + \displaystyle\sum_{j=1}^{\infty} \left( 1 + x^j \right) P_j = 0, where PjP_j is (1z)(1zx)(1zx2)(1zxj1)(zx)(zx2)(zx3)(zxj). \dfrac {(1-z)(1-zx)(1-zx^2) \cdots (1-zx^{j-1})}{(z-x)(z-x^2)(z-x^3)\cdots(z-x^j)}.