MathDB
Problems
Contests
National and Regional Contests
USA Contests
USA - College-Hosted Events
Harvard-MIT Mathematics Tournament
2018 Harvard-MIT Mathematics Tournament
6
2018 Algebra / NT #6
2018 Algebra / NT #6
Source:
February 12, 2018
Problem Statement
Let
α
,
β
,
\alpha,\beta,
α
,
β
,
and
γ
\gamma
γ
be three real numbers. Suppose that
cos
α
+
cos
β
+
cos
γ
=
1
\cos\alpha+\cos\beta+\cos\gamma=1
cos
α
+
cos
β
+
cos
γ
=
1
sin
α
+
sin
β
+
sin
γ
=
1.
\sin\alpha+\sin\beta+\sin\gamma=1.
sin
α
+
sin
β
+
sin
γ
=
1.
Find the smallest possible value of
cos
α
.
\cos \alpha.
cos
α
.
Back to Problems
View on AoPS