MathDB
Problems
Contests
National and Regional Contests
USA Contests
USA - College-Hosted Events
UMD Math Competition
2023 UMD Math Competition Part II
5
AM-GM Jensen Bait
AM-GM Jensen Bait
Source: UMD 2023 Part II Problem 5
November 30, 2023
inequalities
AM-GM
UMD
Problem Statement
Let
0
≤
a
1
≤
a
2
≤
⋯
≤
a
n
≤
1
0 \le a_1 \le a_2 \le \dots \le a_n \le 1
0
≤
a
1
≤
a
2
≤
⋯
≤
a
n
≤
1
be
n
n
n
real numbers with
n
≥
2
n \ge 2
n
≥
2
. Assume
a
1
+
a
2
+
⋯
+
a
n
≥
n
−
1
a_1 + a_2 + \dots + a_n \ge n-1
a
1
+
a
2
+
⋯
+
a
n
≥
n
−
1
. Prove that
a
2
a
3
…
a
n
≥
(
1
−
1
n
)
n
−
1
a_2a_3\dots a_n \ge \left( 1 - \frac 1n \right)^{n-1}
a
2
a
3
…
a
n
≥
(
1
−
n
1
)
n
−
1
Back to Problems
View on AoPS