MathDB
Turkish NMO First Round - 2012 Problem - 35 {Algebra}

Source:

July 1, 2012
inequalities

Problem Statement

For every positive real pair (x,y)(x,y) satisfying the equation x3+y4=x2yx^3+y^4 = x^2y, if the greatest value of xx is AA, and the greatest value of yy is BB, then A/B=?A/B = ?
<spanclass=latexbold>(A)</span> 23<spanclass=latexbold>(B)</span> 512729<spanclass=latexbold>(C)</span> 7291024<spanclass=latexbold>(D)</span> 34<spanclass=latexbold>(E)</span> 243256 <span class='latex-bold'>(A)</span>\ \frac{2}{3} \qquad <span class='latex-bold'>(B)</span>\ \frac{512}{729} \qquad <span class='latex-bold'>(C)</span>\ \frac{729}{1024} \qquad <span class='latex-bold'>(D)</span>\ \frac{3}{4} \qquad <span class='latex-bold'>(E)</span>\ \frac{243}{256}