MathDB
|f(x+y)-f(x)-f(y)|<=1, approximate by an additive function

Source: Turkey TST 2000

February 28, 2005
functioninductionalgebrainequalitiesTSTadditive functionfunctional equation

Problem Statement

Given is a function f:RRf:\mathbb{R}\rightarrow \mathbb{R} such that f(x+y)f(x)f(y)1|f(x+y)-f(x)-f(y)|\leq 1. Prove the existence of an additive function g:RRg:\mathbb{R}\rightarrow \mathbb{R} (that is g(x+y)=g(x)+g(y)g(x+y)=g(x)+g(y)) such that f(x)g(x)1|f(x)-g(x)|\leq 1 for any xRx \in \mathbb{R}