MathDB
2023 Algebra NT #9 s_{20}(n) - s_{23}(n)

Source:

February 28, 2024
number theory

Problem Statement

For any positive integers aa and bb with b>1b > 1, let sb(a)s_b(a) be the sum of the digits of aa when it is written in base bb. Suppose nn is a positive integer such that i=1log23ns20(n23i)=103andi=1log20ns23(n20i)=115\sum^{\lfloor \log_{23} n\rfloor}_{i=1} s_{20} \left( \left\lfloor \frac{n}{23^i} \right\rfloor \right)= 103 \,\,\, \text{and} \,\,\, \sum^{\lfloor \log_{20} n\rfloor}_{i=1} s_{23} \left( \left\lfloor \frac{n}{20^i} \right\rfloor \right)= 115 Compute s20(n)s23(n)s_{20}(n) - s_{23}(n).