MathDB
\sqrt{a^2 + b^2} \geq a + b - (2 - \sqrt{2}) \sqrt{ab}

Source: Polish MO Finals 1957 p4

August 29, 2024
algebrainequalities

Problem Statement

Prove that if a0 a \geq 0 and b0 b \geq 0 , then a2+b2a+b(22)ab. \sqrt{a^2 + b^2} \geq a + b - (2 - \sqrt{2}) \sqrt{ab}.