MathDB
Cyclic pentagon and product of distances

Source: Romania TST 2009. Day 2. Problem 3.

April 21, 2009
conicsanalytic geometrygeometrycircumcircletrigonometry

Problem Statement

Prove that pentagon ABCDE ABCDE is cyclic if and only if \mathrm{d(}E,AB\mathrm{)}\cdot \mathrm{d(}E,CD\mathrm{)} \equal{} \mathrm{d(}E,AC\mathrm{)}\cdot \mathrm{d(}E,BD\mathrm{)} \equal{} \mathrm{d(}E,AD\mathrm{)}\cdot \mathrm{d(}E,BC\mathrm{)} where d(X,YZ) \mathrm{d(}X,YZ\mathrm{)} denotes the distance from point X X ot the line YZ YZ.