MathDB
Problems
Contests
Undergraduate contests
Putnam
2018 Putnam
A2
Putnam 2018 A2
Putnam 2018 A2
Source:
December 2, 2018
Putnam
Putnam 2018
determinant
Problem Statement
Let
S
1
,
S
2
,
…
,
S
2
n
−
1
S_1, S_2, \dots, S_{2^n - 1}
S
1
,
S
2
,
…
,
S
2
n
−
1
be the nonempty subsets of
{
1
,
2
,
…
,
n
}
\{1, 2, \dots, n\}
{
1
,
2
,
…
,
n
}
in some order, and let
M
M
M
be the
(
2
n
−
1
)
×
(
2
n
−
1
)
(2^n - 1) \times (2^n - 1)
(
2
n
−
1
)
×
(
2
n
−
1
)
matrix whose
(
i
,
j
)
(i, j)
(
i
,
j
)
entry is
m
i
j
=
{
0
if
S
i
∩
S
j
=
∅
,
1
otherwise
.
m_{ij} = \left\{ \begin{array}{cl} 0 & \text{if $S_i \cap S_j = \emptyset$}, \\ 1 & \text{otherwise}. \end{array} \right.
m
ij
=
{
0
1
if
S
i
∩
S
j
=
∅
,
otherwise
.
Calculate the determinant of
M
M
M
.
Back to Problems
View on AoPS