MathDB
a^3+b^3+c^3 >= a+b+c if ab +be + ba <= 3abc 1999 Romania NMO VIII p2b

Source:

August 14, 2024
algebrainequalities

Problem Statement

Let a,b,ca, b, c be positive real numbers such that ab+be+ba3abcab +be + ba \le 3abc. Prove that a3+b3+c3a+b+c.a^3+b^3+c^3 \ge a+b+c.