MathDB
Putnam 2021 A2

Source:

December 5, 2021
PutnamPutnam 2021

Problem Statement

For every positive real number xx, let g(x)=limr0((x+1)r+1xr+1)1r. g(x)=\lim_{r\to 0} ((x+1)^{r+1}-x^{r+1})^{\frac{1}{r}}. Find limxg(x)x\lim_{x\to \infty}\frac{g(x)}{x}.
By the Binomial Theorem one obtains\\ limxlimr0((1+r)+(1+r)r2x1+(1+r)r(r1)6x2+)1r\lim_{x \to \infty} \lim_{r \to 0} \left((1+r)+\frac{(1+r)r}{2}\cdot x^{-1}+\frac{(1+r)r(r-1)}{6} \cdot x^{-2}+\dots \right)^{\frac{1}{r}}\\ =limr0(1+r)1r=e=\lim_{r \to 0}(1+r)^{\frac{1}{r}}=\boxed{e}