MathDB
2017 China TSTST 1 Day 2 Problem 6

Source: 2017 China TSTST 1 Day 2 Problem 6

March 7, 2017
number theoryPolynomialsprime numbersalgebrapolynomial

Problem Statement

For a given positive integer nn and prime number pp, find the minimum value of positive integer mm that satisfies the following property: for any polynomial f(x)=(x+a1)(x+a2)(x+an)f(x)=(x+a_1)(x+a_2)\ldots(x+a_n) (a1,a2,,ana_1,a_2,\ldots,a_n are positive integers), and for any non-negative integer kk, there exists a non-negative integer kk' such that vp(f(k))<vp(f(k))vp(f(k))+m.v_p(f(k))<v_p(f(k'))\leq v_p(f(k))+m. Note: for non-zero integer NN,vp(N)v_p(N) is the largest non-zero integer tt that satisfies ptNp^t\mid N.