MathDB
Turkish NMO First Round - 2012 Problem - 21 {Geometry}

Source:

July 1, 2012
geometryangle bisector

Problem Statement

The angle bisector of vertex AA of ABC\triangle ABC cuts [BC][BC] at DD. The circle passing through AA and touching to BCBC at DD meets [AB][AB] and [AC][AC] at PP and QQ, respectively. ADAD and PQPQ meet at TT. If AB=5,BC=6,CA=7|AB|=5, |BC|=6, |CA|=7, then ATTD=?\frac{|AT|}{|TD|}=?
<spanclass=latexbold>(A)</span> 75<spanclass=latexbold>(B)</span> 2<spanclass=latexbold>(C)</span> 3<spanclass=latexbold>(D)</span> 72<spanclass=latexbold>(E)</span> 4 <span class='latex-bold'>(A)</span>\ \frac75 \qquad <span class='latex-bold'>(B)</span>\ 2 \qquad <span class='latex-bold'>(C)</span>\ 3 \qquad <span class='latex-bold'>(D)</span>\ \frac72 \qquad <span class='latex-bold'>(E)</span>\ 4