MathDB
Turkey EGMO TST 2017 P3

Source: Turkey EGMO TST 2017 P3

June 1, 2017
TurkeyEGMOTSTalgebrainequalitiescontest problem

Problem Statement

For all positive real numbers x,y,zx,y,z satisfying the inequality xyz+yzx+zxy3,\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\leq 3, prove that x2y3+y2z3+z2x3xy+yz+zx.\frac{x^2}{y^3}+\frac{y^2}{z^3}+\frac{z^2}{x^3}\geq \frac{x}{y}+\frac{y}{z}+\frac{z}{x}.