ASU 101 All Soviet Union MO 1968 parallel and equal products wanted
Source:
June 20, 2019
geometry
Problem Statement
Given two acute-angled triangles ABC and A′B′C′ with the points O and O′ inside. Three pairs of the perpendiculars are drawn: [OA1] to the side [BC], [O′A1′] to the side [B′C′], [OB1] to the side [AC], [O′B1′] to the side [A′C′], [OC1] to the side [AB], [O′C1′] to the side [A′B′]; It is known that [OA1]∥[O′A′],[OB1]∥[O′B′],[OC1]∥[O′C′] and
∣OA1∣⋅∣O′A′∣=∣OB1∣⋅∣O′B′∣=∣OC1∣⋅∣O′C′∣
Prove that [O′A1′]∥[OA],[O′B1′]∥[OB],[O′C1′]∥[OC]
and ∣O′A1′∣⋅∣OA∣=∣O′B1′∣⋅∣OB∣=∣O′C1′∣⋅∣OC∣