MathDB
ASU 101 All Soviet Union MO 1968 parallel and equal products wanted

Source:

June 20, 2019
geometry

Problem Statement

Given two acute-angled triangles ABCABC and ABCA'B'C' with the points OO and OO' inside. Three pairs of the perpendiculars are drawn: [OA1][OA_1] to the side [BC][BC], [OA1][O'A'_1] to the side [BC][B'C'], [OB1][OB_1] to the side [AC][AC], [OB1][O'B'_1] to the side [AC][A'C'], [OC1][OC_1] to the side [AB][AB], [OC1][O'C'_1] to the side [AB][A'B']; It is known that [OA1][OA],[OB1][OB],[OC1][OC][OA_1] \parallel [O'A'], [OB_1] \parallel [O'B'], [OC_1] \parallel [O'C'] and OA1OA=OB1OB=OC1OC|OA_1|\cdot|O'A'| = |OB_1|\cdot |O'B'| = |OC_1|\cdot |O'C'| Prove that [OA1][OA],[OB1][OB],[OC1][OC][O'A'_1] \parallel [OA], [O'B'_1] \parallel[OB], [O'C'_1] \parallel[OC] and OA1OA=OB1OB=OC1OC|O'A'_1|\cdot|OA| = |O'B'_1|\cdot|OB| = |O'C'_1|\cdot|OC|