MathDB
M={x^2+x}

Source: Moldavian Republic Olympiad

March 5, 2006
modular arithmeticinductionnumber theory unsolvednumber theory

Problem Statement

Let M={x2+xxN}M=\{x^2+x \mid x\in \mathbb N^{\star} \}. Prove that for every integer k2k\geq 2 there exist elements a1,a2,,ak,bka_{1}, a_{2}, \ldots, a_{k},b_{k} from MM, such that a1+a2++ak=bka_{1}+a_{2}+\cdots+a_{k}=b_{k}.