MathDB
HMMT Algebra/NT 2019/10: How hard could it be?

Source:

February 17, 2019
HMMTalgebra

Problem Statement

The sequence of integers {ai}i=0\{a_i\}_{i = 0}^{\infty} satisfies a0=3a_0 = 3, a1=4a_1 = 4, and an+2=an+1an+an+121an21a_{n+2} = a_{n+1} a_n + \left\lceil \sqrt{a_{n+1}^2 - 1} \sqrt{a_n^2 - 1}\right\rceil for n0n \ge 0. Evaluate the sum n=0(an+3an+2an+2an+an+1an+3anan+1).\sum_{n = 0}^{\infty} \left(\frac{a_{n+3}}{a_{n+2}} - \frac{a_{n+2}}{a_n} + \frac{a_{n+1}}{a_{n+3}} - \frac{a_n}{a_{n+1}}\right).