MathDB
2018 Individual #24

Source:

January 13, 2023
2018 Individual

Problem Statement

The sides of ABC\triangle ABC form an arithmetic sequence of integers. Incircle II is tangent to ABAB, BCBC, and CACA at DD, EE, and FF, respectively. Given that DB=32DB = \tfrac32, FA=12FA = \tfrac12, find the radius of II.
<spanclass=latexbold>(A)</span>12<spanclass=latexbold>(B)</span>157<spanclass=latexbold>(C)</span>156<spanclass=latexbold>(D)</span>2159<spanclass=latexbold>(E)</span>154<span class='latex-bold'>(A) </span> \dfrac12\qquad<span class='latex-bold'>(B) </span> \dfrac{\sqrt{15}}7\qquad<span class='latex-bold'>(C) </span> \dfrac{\sqrt{15}}6\qquad<span class='latex-bold'>(D) </span> \dfrac{2\sqrt{15}}{9}\qquad<span class='latex-bold'>(E) </span> \dfrac{\sqrt{15}}{4}