MathDB
Romania District MO 2022 Grade 11 P4

Source: Romania District MO 2022 Grade 11

March 27, 2022
matrixrankcollege contestsromania

Problem Statement

Let AMn(C)A\in\mathcal{M}_n(\mathbb{C}) where n2.n\geq 2. Prove that if m={rank(Ak)rank(Ak+1)":kN}m=|\{\text{rank}(A^k)-\text{rank}(A^{k+1})":k\in\mathbb{N}^*\}| then n+1m(m+1)/2.n+1\geq m(m+1)/2.