MathDB
Inequality with squares

Source: 63 Polish MO 2012 Finals - Problem 6

April 23, 2018
algebraInequalityPolandinequalities

Problem Statement

Show that for any positive real numbers a,b,ca, b, c true is inequality: (abc)2+(bca)2+(cab)222(abc+bca+cab)\left(\frac{a - b}{c}\right)^2 + \left(\frac{b - c}{a}\right)^2 + \left(\frac{c - a}{b}\right)^2 \ge 2\sqrt{2}\left(\frac{a - b}{c} + \frac{b - c}{a} + \frac{c - a}{b} \right).