MathDB
4-variable inequality

Source: Bulgaria JBMO TST 2017 P3 day 2

August 26, 2019

Problem Statement

Prove that for all positive real m,n,p,qm, n, p, q and t=m+n+p+q2t=\frac{m+n+p+q}{2}, mt+n+p+q+nt+m+p+q+pt+m+n+q+qt+m+n+p45. \frac{m}{t+n+p+q} +\frac{n}{t+m+p+q} +\frac{p} {t+m+n+q}+\frac{q}{t+m+n+p} \geq \frac{4}{5}.