MathDB
Two identities

Source: Canada 1974/1

January 13, 2007
logarithmsinduction

Problem Statement

i) If x=(1+1n)nx = \left(1+\frac{1}{n}\right)^{n} and y=(1+1n)n+1y=\left(1+\frac{1}{n}\right)^{n+1}, show that yx=xyy^{x}= x^{y}. ii) Show that, for all positive integers nn, 1222+3242++(1)n(n1)2+(1)n+1n2=(1)n+1(1+2++n).1^{2}-2^{2}+3^{2}-4^{2}+\cdots+(-1)^{n}(n-1)^{2}+(-1)^{n+1}n^{2}= (-1)^{n+1}(1+2+\cdots+n).