MathDB
Problems
Contests
International Contests
IMO Longlists
1974 IMO Longlists
25
Prove that there exists an integer k [ILL 1974]
Prove that there exists an integer k [ILL 1974]
Source:
January 2, 2011
trigonometry
limit
algebra proposed
algebra
Problem Statement
Let
f
:
R
→
R
f : \mathbb R \to \mathbb R
f
:
R
→
R
be of the form
f
(
x
)
=
x
+
ϵ
sin
x
,
f(x) = x + \epsilon \sin x,
f
(
x
)
=
x
+
ϵ
sin
x
,
where
0
<
∣
ϵ
∣
≤
1.
0 < |\epsilon| \leq 1.
0
<
∣
ϵ
∣
≤
1.
Define for any
x
∈
R
,
x \in \mathbb R,
x
∈
R
,
x
n
=
f
o
…
o
f
⏟
n
times
(
x
)
.
x_n=\underbrace{f \ o \ \ldots \ o \ f}_{n \text{ times}} (x).
x
n
=
n
times
f
o
…
o
f
(
x
)
.
Show that for every
x
∈
R
x \in \mathbb R
x
∈
R
there exists an integer
k
k
k
such that
lim
n
→
∞
x
n
=
k
π
.
\lim_{n\to \infty } x_n = k\pi.
lim
n
→
∞
x
n
=
kπ
.
Back to Problems
View on AoPS