MathDB
Schur inequality

Source: Moldova tst 2019

March 9, 2019
InequalityinequalitiesMoldova

Problem Statement

Let a,b,c0a,b,c \ge 0 such that a+b+c=1a+b+c=1 and s5s \ge 5. Prove that s(a2+b2+c2)3(s3)(a3+b3+c3)+1s(a^2+b^2+c^2) \le 3(s-3)(a^3+b^3+c^3)+1