MathDB
Brazilian Mathematical Olympiad N2 (7th-8th grade) Day 1 P2

Source:

November 16, 2018
Brazil

Problem Statement

We say that a quadruple (A,B,C,D)(A,B,C,D) is dobarulho when A,B,CA,B,C are non-zero algorisms and DD is a positive integer such that: 1.1. A8A \leq 8 2.2. D>1D>1 3.3. DD divides the six numbers ABC\overline{ABC}, BCA\overline{BCA}, CAB\overline{CAB}, (A+1)CB\overline{(A+1)CB}, CB(A+1)\overline{CB(A+1)}, B(A+1)C\overline{B(A+1)C}. Find all such quadruples.